Simpson’s Rule for Approximating Definite Integrals in R

Simpson’s rule is another closed Newton-Cotes formula for approximating integrals over an interval with equally spaced nodes. Unlike the trapezoidal rule, which employs straight lines to approximate a definite integral,...

The Trapezoidal Rule of Numerical Integration in R

The Trapezoidal Rule is another of Closed Newton-Cotes formulas for approximating the definite integral of a function. The trapezoidal rule is so named due to the area approximated under the...

Numerical Differentiation with Finite Differences in R

Numerical differentiation is a method of approximating the derivative of a function [latex]f[/latex] at particular value [latex]x[/latex]. Often, particularly in physics and engineering, a function may be too complicated to...

Neville’s Method of Polynomial Interpolation

Neville’s method evaluates a polynomial that passes through a given set of [latex]x[/latex] and [latex]y[/latex] points for a particular [latex]x[/latex] value using the Newton polynomial form. Neville’s method is similar...

Lagrangian Polynomial Interpolation with R

Polynomial interpolation is the method of determining a polynomial that fits a set of given points. There are several approaches to polynomial interpolation, of which one of the most well...

The Bisection Method of Root-Finding with R

The bisection method is another approach to finding the root of a continuous function [latex]f(x)[/latex] on an interval [latex][a, b][/latex]. The method takes advantage of a corollary of the intermediate...

The Secant Method Root-Finding Algorithm in R

The secant method for finding roots of nonlinear equations is a common and popular variation of the Newton-Raphson method that has been used for several millennia before the invention of...

The Newton-Raphson Root-Finding Algorithm in R

The Newton-Raphson method is an approach for finding the roots of nonlinear equations and is one of the most common root-finding algorithms due to its relative simplicity and speed. The...